Цп автоматизированные системы управления и промышленная безопасность. Модель: виды моделей, понятие и описание Каковы основные свойства моделей

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.

  • II. Основные принципы и правила служебного поведения государственных гражданских служащих Федеральной налоговой службы
  • II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  • II. Основные этапы развития физики Становление физики (до 17 в.).
  • II.4. Классификация нефтей и газов по их химическим и физическим свойствам
  • III.2.1) Понятие преступления, его основные характеристики.
  • Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.

    Например, математические описания (модели ) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. могут считаться одинаковыми с точки зрения их описания, хотя сами процессы различны.

    Границы между моделями различного вида весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.

    Как правило модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С.

    Модель можно представить формально в виде: М = < O, Z, A, B, C >.

    Основные свойства любой модели :

    • целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
    • конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
    • упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
    • приблизительность - действительность отображается моделью грубо или приблизительно;
    • адекватность - модель должна успешно описывать моделируемую систему;
    • наглядность, обозримость основных ее свойств и отношений;
    • доступность и технологичность для исследования или воспроизведения;
    • информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
    • сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
    • полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
    • устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
    • целостность - модель реализует некоторую систему, т.е. целое;
    • замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
    • адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
    • управляемость - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
    • возможность развития моделей (предыдущего уровня).

    Жизненный цикл моделируемой системы:

    • сбор информации об объекте, выдвижение гипотез, предварительный модельный анализ;
    • проектирование структуры и состава моделей (подмоделей);
    • построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
    • исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
    • исследование адекватности, устойчивости, чувствительности модели;
    • оценка средств моделирования (затраченных ресурсов);
    • интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
    • генерация отчетов и проектных (народно-хозяйственных) решений;
    • уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.

    Моделирование – есть метод системного анализа.



    Часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы.

    Модель, построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.

    Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности.

    В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний".

    Моделирование рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом, т.е. простым или обычным экспериментом, а над копией оригинала. Здесь важен изоморфизм систем оригинальной и модельной. Изоморфизм - равенство, одинаковость, подобие.

    Модели и моделирование применяются по основным направлениям:

    • в обучении (как моделям, моделированию, так и самих моделей);
    • в познании и разработке теории исследуемых систем;
    • в прогнозировании (выходных данных, ситуаций, состояний системы);
    • в управлении (системой в целом, отдельными ее подсистемами), в выработке управленческих решений и стратегий;
    • в автоматизации (системы или ее отдельных подсистем).

    Цели моделирования

    Цели моделирования (слайд ):

    · исследование оригинала - изучение сущности объекта или явления,

    · научиться управлять оригиналом, оказывая на него воздействия - синтез («как сделать, чтобы …» );

    · научиться прогнозировать последствия различных воздействий на оригинал - анализ («что будет, если …» );

    · выбор наилучшего решения в заданных условиях -оптимизация («как сделать лучше» ).

    Разные науки исследуют объекты и процессы под разными углами зрения и строят различные типы моделей. Тип модели определяется целями моделирования (слайд ). В физике изучаются процессы взаимодействия и изменения объектов, в химии - их химический состав, в биологии ­ строение и поведение живых организмов и так далее.

    Таким образом, можно сказать, что основная цель моделирования - это изучение и исследование объекта или явления, для которого модель построена.

    Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью (слайд ).Возьмем в качестве примера человека: в разных науках он исследуется в рамках различных моделей. В рамках механики его можно рассматривать как материальную точку, в химии - как объект, состоящий из различных химических веществ, в биологии - как систему, стремящуюся к самосохранению, и так далее.

    Многие исследователи выделяют следующие свойства моделей: адекватность, сложность, конечность, наглядность, истинность, приближенность.

    1. Главное свойство модели - адекватность, то есть соответствие ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств.

    От модели не требуется достоверности - в этом случае получится не модель, а копия. Степень соответствия определяется целями моделирования. Излишнее сходство с оригиналом столь же бесполезно, как и недостаточное.

    Адекватность теоретических моделей законам реального мира проверяется с помощью опытов и экспериментов и называется верификацией модели.

    2. Простота и сложность. Хотя сложные модели и более точно отражают моделируемые свойства оригинала, но они более громоздки, труднообозримы и неудобны в обращении. Поэтому исследователь стремится к упрощению модели, так как с простыми моделями легче оперировать.

    При стремлении к построению простой модели должен соблюдаться основной принцип упрощения модели : упрощать модель можно до тех пор, пока сохраняются основные свойства, характеристики и закономерности, присущие оригиналу.

    Этот принцип указывает на предел упрощения. При этом понятие простоты (или сложности) модели является понятием относительным.

    Более простые (грубые) модели используются при решении задачи синтеза, а более сложные точные модели – при решении задачи анализа.



    3.Конечность моделей - заключается, во-первых, в том, что они отображают оригинал в конечном числе отношений, т.е. с конечным числом связей с другими объектами, с конечной структурой и конечным количеством свойств на данном уровне изучения, исследования, описания, располагаемых ресурсов. Во-вторых, в том, что ресурсы (информационные, финансовые, энергетические, временные, технические и т.д.) моделирования и наши знания как интеллектуальные ресурсы конечны, а потому объективно ограничивают возможности моделирования и сам процесс познания мира через модели на данном этапе развития человечества.

    4.Приближенность моделей . Конечность и простота (упрощенность) модели характеризуют качественное различие (на структурном уровне) между оригиналом и моделью. Приближенность модели будет характеризовать количественную сторону этого различия. Приближенность модели к оригиналу неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования.

    5.Истинность моделей . В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только практика является критерием истинности.

    Классификация моделей

    Для моделей можно составить различные виды классификаций в зависимости от одного или нескольких признаков, общих для той или иной группы моделей.

      Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

      Упрощенность : модель отображает только существенные стороны объекта;

      Приблизительность : действительность отображается моделью грубо или приблизительно;

      Адекватность : насколько успешно модель описывает моделируемую систему;

      Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;

      Потенциальность : предсказуемость модели и её свойств;

      Сложность : удобство её использования;

      Полнота : учтены все необходимые свойства;

      Адаптивность .

    Одни и те же устройства, процессы, явления и т. д. (далее - «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи.

    Требования к моделям. Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

      адекватность , то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадиипроектирования, когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например,метод последовательных приближений;

      точность , то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;

      универсальность , то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения бо́льшего круга задач;

      целесообразная экономичность , то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, - результат компромисса между отпущенными ресурсами и особенностями используемой модели;

    Выбормодели и обеспечение точности моделирования считается одной из самых важных задач моделирования.

    Основные этапы моделирования. Моделирование – процесс создания и использования модели. Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.

    Цели моделирования

      Познание действительности

      Проведение экспериментов

      Проектирование и управление

      Прогнозирование поведения объектов

      Тренировка и обучения специалистов

      Обработка информации

    Все этапы моделирования определяются поставленной задачей и целями моделирования. В общем случае процесс построения и исследования модели можно представить следующей схемой:

    Первый этап - постановка задачи включает в себя стадии:описание задачи, определение цели моделирования, анализ объекта.

      Описание задачи. Задача формулируется на обычном языке. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, «что будет, если? ...». В задачах, относящихся ко второй группе, требуется определить, какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию, «как сделать, чтобы? ..».

      Определение цели моделирования. На этой стадии необходимо среди многих характеристик (параметров) объекта выделить существенные . Для одного и того же объекта при разных целях моделирования существенными будут считаться разные свойства. Определение цели моделирования позволяет четко установить, какие данные являются исходными, что требуется получить на выходе и какими свойствами объекта можно пренебречь. Строитсясловесная модель задачи.

      Анализ объекта подразумевает четкое выделение моделируемого объекта и его основных свойств.

    Второй этап - формализация задачи связан с созданиемформализованной модели , то есть модели, записанной на каком-либо формальном языке. Например, данные переписи населения, представленные в виде таблицы или диаграммы - это формализованная модель.

    В общем смысле формализация - это приведение существенных свойств и признаков объекта моделирования к выбранной форме. Формальная модель - это модель, полученная в результате формализации.

    Третий этап - разработка модели начинается с выбора инструмента моделирования, другими словами, программной среды, в которой будет создаваться и исследоваться модель. От этого выбора зависиталгоритм построения модели, а также форма его представления. В среде программирования этопрограмма , написанная на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т. д.) этопоследовательность технологических приемов , приводящих к решению задачи. Одну и ту же задачу можно решить, используя различные среды. Выбор инструмента моделирования зависит, в первую очередь, от реальных возможностей, как технических, так и материальных.

    Четвертый этап - эксперимент включает две стадии: тестирование модели и проведение исследования.

      Тестирование модели - процесс проверки правильности построения модели. На этой стадии проверяется разработанный алгоритм построения модели иадекватностьполученной модели объекту и цели моделирования. Для проверки правильности алгоритма построения модели используется тестовые данные, для которых конечный результат заранее известен (обычно его определяют ручным способом). Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину несоответствия. Тестирование должно быть целенаправленным и систематизированным, а усложнение тестовых данных должно происходить постепенно. Чтобы убедиться, что построенная модель правильно отражает существенные для цели моделирования свойства оригинала, то есть является адекватной, необходимо подбирать тестовые данные, которые отражают реальную ситуацию.

      Исследование модели. К этой стадии можно переходить только после того, как тестирование модели прошло успешно, и вы уверены, что создана именно та модель, которую необходимо исследовать.

    Пятый этап - анализ результатов является ключевым для процесса моделирования. Именно по итогам этого этапа принимается решение: продолжать исследование или закончить. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. В этом случае необходимокорректировать модель , то есть возвращаться к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

    Информационная модель объекта -модельобъекта, представленная в видеинформации, описывающей существенные для данного рассмотренияпараметрыипеременные величиныобъекта, связи между ними, входы и выходы объекта и позволяющая путём подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта.Информационные модели нельзя потрогать или увидеть, они не имеют материального воплощения, потому что строятся только на информации. Информационная модель - совокупность информации, характеризующая существенные свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешниммиром.

    Виды информационных моделей:

    1. Описательные информационные модели - это модели, созданные на естественном языке (т.е. на любом языке общения между людьми: английском, русском, китайском, мальтийском и т.п.) в устной или письменной форме.

    2. Формальные информационные модели - это модели, созданные на формальном языке (т.е. научном, профессиональном или специализированном). Примеры формальных моделей: все виды формул, таблицы, графы, карты, схемы и т.д.

    3. Хроматические (информационные) модели - это модели, созданные на естественном языке семантики цветовых концептов и их онтологических предикатов (т.е. на языке смыслов и значений цветовых канонов, репрезентативно воспроизводившихся в мировой культуре). Примеры хроматических моделей: "атомарная" модель интеллекта (АМИ), межконфессиональная имманентность религий (МИР), модель аксиолого-социальной семантики (МАСС) и др., созданные не базе теории и методологии хроматизма.

    Рассмотрим подробнее класс информационных моделей с позиции способов представления информации . Форма представления информационной модели зависит от способа кодирования (алфавита) и материального носителя.

    Воображаемое (мысленное или интуитивное) моделирование - это мысленное представление об объекте. Такие модели формируются в воображении человека и сопутствуют его сознательной деятельности. Они всегда предшествуют созданию материального объекта, материальной и информационной модели, являясь одним из этапов творческого процесса. Например, музыкальная тема в мозгу композитора - интуитивная модель музыкального произведения.

    Вербальное моделирование (относится к знаковым) - это представление информационной модели средствами естественного разговорного языка (фонемами). Мысленная модель, выраженная в разговорной форме, называется вербальной (от латинского слова verbalize - устный). Форма представления такой модели - устное или письменное сообщение. Примерами являются литературные произведения, информация в учебных пособиях и словарях, инструкции пользования устройством, правила дорожного движения.Наглядное (выражено на языке представления) моделирование - это выражение свойств оригинала с помощью образов. Например, рисунки, художественные полотна, фотографии, кинофильмы. При научном моделировании понятия часто кодируются рисунками -иконическое моделирование. Сюда же относятсягеометрические модели - информационные модели, представленные средствами графики.

    Образно-знаковое моделирование использует знаковые образы какого-либо вида: схемы, графы, чертежи, графики, планы, карты. К этой группе относятся структурные информационные модели, создаваемые для наглядного изображения составных частей и связей объектов. Наиболее простые и распространенные информационные структуры - это таблицы, схемы, графы, блок-схемы, деревья.

    Знаковое (символическое выражено на языке описания) моделирование использует алфавиты формальных языков: условные знаки, специальные символы, буквы, цифры и предусматривает совокупность правил оперирования с этими знаками. Примеры: специальные языковые системы, физические или химические формулы, математические выражения и формулы, нотная запись и т. д. Программа, записанная по правилам языка программирования, является знаковой моделью.

    Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике , который позволяет описывать функциональные зависимости между величинами. Составление математической модели во многих задачах моделирования хоть и промежуточная, но очень существенная стадия. В тех случаях, когда моделирование ориентировано на исследование моделей с помощью компьютера, одним из его этапов является разработкакомпьютерной модели .Компьютерная модель - это созданный за счет ресурсов компьютера виртуальный образ, качественно и количественно отражающий внутренние свойства и связи моделируемого объекта, иногда передающий и его внешние характеристики. Компьютерная модель представляет собой материальную модель, воспроизводящую внешний вид, строение или действие моделируемого объекта посредством электромагнитных сигналов. Разработке компьютерной модели предшествуют мысленные, вербальные, структурные, математические и алгоритмические модели.

    Информация - это абстракция.
    Модель
    - это тот объект, та система, которая позволяет облечь эту информацию в конкретное, например компьютерное, представление, содержание.
    Моделирование - тот процесс, метод, который позволяет осуществлять перенос информации от реальной системы к модели и наоборот.

    Модели по их назначению бывают познавательными, прагматическими и инструментальными.

    • Познавательная модель - форма организации и представления знаний, средство соединения новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.
    • Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность подгоняется под некоторую прагматическую модель. Это, как правило, прикладная модель.
    • Инструментальная модель - средство построения, исследования и/или использования прагматических и/или познавательных моделей. Познавательные модели отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

    По уровню моделирования модели бывают эмпирическими, теоретическими и смешанными.

    • Эмпирическая - на основе эмпирических фактов, зависимостей;
    • Теоретическая - на основе математических описаний;
    • Смешанная или полуэмпирическая - использующая эмпирические зависимости и математические описания.

    Проблема моделирования состоит из трех задач:

    1. построения модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);
    2. исследования модели (эта задача более формализуема, имеются методы исследования различных классов моделей);
    3. использования модели (конструктивная и конкретизируемая задача).
    Моделирование - это универсальный метод получения, описания и использования знаний. Оно используется в любой профессиональной деятельности.
    В современной науке и технологии математическое моделирование усиливается, актуализируется проблемами, успехами других наук. Математическое моделирование реальных и нелинейных систем живой и неживой природы позволяет перекидывать мостики между нашими знаниями и реальными системами, процессами, в том числе и мыслительными.

    Моделирование - процесс построения, изучения и применения моделей.

    Т.е. можно сказать, что

    моделировaние - это изучение объектa путем построения и исследования его модели, осуществляемое с определенной целью и состоит в зaмене экспериментa с оригинaлом экспериментом нa модели.

    Приведем наиболее важные типы моделей (моделирования) с краткими определениями, примерами.

    Модель называется статической , если среди параметров, участвующих в описании модели, нет временного параметра. Статическая модель в каждый момент времени дает лишь «фотографию» системы, ее срез.

    Модель динамическая, если среди параметров модели есть временной параметр, т. е. она отображает систему (процессы в системе) во времени.

    Модель дискретная , если она описывает поведение системы только в дискретные моменты времени.

    Модель непрерывная , если она описывает поведение системы для всех моментов времени из некоторого промежутка.

    Модель имитационная , если она предназначена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.

    Модель детерминированная , если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае модель недетерминированная , стохастическая (вероятностная).

    Модель теоретико-множественная , если представима с помощью некоторых множеств и отношений принадлежности им и между ними.

    Модель логическая , если она представима предикатами, логическими функциями.

    Модель игровая , если она описывает, реализует некоторую игровую ситуацию Между участниками игры (лицами, коалициями).

    Модель алгоритмическая , если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого на первый взгляд непривычного типа моделей кажется нам вполне обоснованным, так как не все модели могут быть исследованы или реализованы алгоритмически.

    Модель языковая , лингвистическая , если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т. п.

    Модель визуальная , если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

    Модель натурная , если она есть материальная копия объекта моделирования.

    Модель геометрическая , графическая , если она представима геометрическими образами и объектами.

    Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.

    Границы между моделями различных типов или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т. д.
    Все основные типы моделей, возможно, за исключением некоторых натурных - системно-информационные (инфосистемные) и информационно-логические (инфологические). В узком понимании информационная модель - это модель, описывающая, изучающая, актуализирующая информационные связи и отношения в исследуемой системе. В еще более узком понимании информационная модель - это модель, основанная на данных, структурах данных, их информационно-логическом представлении и обработке. Как широкое, так и узкое понимание информационной модели необходимы, определяются решаемой проблемой и доступными для ее решения ресурсами, в первую очередь информационно-логическими.

    Основные свойства любой модели:

    • конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
    • упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
    • приблизительность - действительность отображается моделью грубо, или приблизительно;
    • адекватность моделируемой системе - модель должна успешно описывать моделируемую систему;
    • наглядность, обозримость основных свойств и отношений;
    • доступность и технологичность для исследования или воспроизведения;
    • информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и давать возможность получить новую информацию;
    • сохранение информации , содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
    • полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
    • устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже та вначале является неустойчивой;
    • замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений.